
How does a typical GC work? A typical non-GC program? GC by default Conclusion

Garbage collection considered harmful?

John Fremlin

http://john.freml.in

2009 May 28



How does a typical GC work? A typical non-GC program? GC by default Conclusion

Contents

This talk is about garbage collection (GC), and why it might be
overused.

How does a typical GC work?

A typical non-GC program?

GC by default

Conclusion



How does a typical GC work? A typical non-GC program? GC by default Conclusion

Outline

How does a typical GC work?

A typical non-GC program?

GC by default

Conclusion



How does a typical GC work? A typical non-GC program? GC by default Conclusion

In practice

• In practice, often the particular algorithm (usually
generational mark-sweep compacting garbage collection) or
implementation of it is not so important.

• Just tune the limits so that it doesn’t run too much and
doesn’t tenure many temporary objects.

• But garbage collection imposes overheads even when a
collection is not taking place.



How does a typical GC work? A typical non-GC program? GC by default Conclusion

In practice

• In practice, often the particular algorithm (usually
generational mark-sweep compacting garbage collection) or
implementation of it is not so important.

• Just tune the limits so that it doesn’t run too much and
doesn’t tenure many temporary objects.

• But garbage collection imposes overheads even when a
collection is not taking place.



How does a typical GC work? A typical non-GC program? GC by default Conclusion

Memory layout

• Memory is divided into two areas, old and new,

• Allocations are made by incrementing a pointer in a block of
new space (the nursery). When the block is full, the garbage
collector runs a local collection.

• Old space is protected (pages marked read-only and moved
into new space if modified).



How does a typical GC work? A typical non-GC program? GC by default Conclusion

Allocations

• Allocations have a type and length header, so that pointers
inside them can be discovered.

• Function entry checks for nursery overflow.

• Closures/thunks are invisible allocations.



How does a typical GC work? A typical non-GC program? GC by default Conclusion

Common implementation issues

• Terrible handling of out of memory conditions (crash, lockup).

• Collections require all threads to stop.

• Weak pointers are inefficient.

• Buffers keep moving around.



How does a typical GC work? A typical non-GC program? GC by default Conclusion

Outline

How does a typical GC work?

A typical non-GC program?

GC by default

Conclusion



How does a typical GC work? A typical non-GC program? GC by default Conclusion

Without GC

• malloc/free - this is the favourite straw man of garbage lovers

• The stack!

• Pools for particular object types.



How does a typical GC work? A typical non-GC program? GC by default Conclusion

Without GC

• malloc/free - this is the favourite straw man of garbage lovers

• The stack!

• Pools for particular object types.



How does a typical GC work? A typical non-GC program? GC by default Conclusion

More common patterns

• Reference counting.

• Clear responsibility for deallocation passed with pointers.

• Never freeing (fork/exit).



How does a typical GC work? A typical non-GC program? GC by default Conclusion

More common patterns

• Reference counting.

• Clear responsibility for deallocation passed with pointers.

• Never freeing (fork/exit).



How does a typical GC work? A typical non-GC program? GC by default Conclusion

Issues

• Wrongly freeing or forgetting to free.

• Fragmentation.

• Programming effort and discipline.

• Wasted copying or extra work for the allocator.



How does a typical GC work? A typical non-GC program? GC by default Conclusion

Outline

How does a typical GC work?

A typical non-GC program?

GC by default

Conclusion



How does a typical GC work? A typical non-GC program? GC by default Conclusion

Uncertain complexity

• Repeating something n times takes more than n times as long.

• Often observed 20% efficiency (where a badly tuned GC runs
80% of the time).

• How much memory or time is needed?



How does a typical GC work? A typical non-GC program? GC by default Conclusion

The distributed future

• Concurrent GC is hard and inherently difficult to scale.

• Versus object pools or the stack, GC does more memory
accesses.

• Requires more memory barriers.

• Erlang has some good ideas here.



How does a typical GC work? A typical non-GC program? GC by default Conclusion

Outline

How does a typical GC work?

A typical non-GC program?

GC by default

Conclusion



How does a typical GC work? A typical non-GC program? GC by default Conclusion

GC has theoretical as well as practical issues

• Garbage collection was invented for Lisp. It was widely
derided.

• It is now everywhere.

• Time for the pendulum to swing back.


	How does a typical GC work?
	A typical non-GC program?
	GC by default
	Conclusion

